### Ion-Track Nanotechnology With High-Energy Heavy Ions

#### **M.E.** Toimil-Molares and C. Trautmann



Materials Research Department GSI Helmholtz Center for Heavy Ion Research Darmstadt







## What is unique about heavy ions in matter?



10 nm

### Very high aspect ratio



### lon track in mica



Ion track in polymer

## What is unique about heavy ions in matter?



10 nm

### 

**One ion = one track** 

### lon track in mica



Ion track in polymer

## What is unique about heavy ions in matter?



10 nm

### Adjustable fluence: 1 - 10<sup>11</sup> cm<sup>-2</sup>



### lon track in mica



### Ion track in polymer

## **Chemical Etching**











### **Etched Ion-Track Membranes**

## Polymeric





Conical











### Inorganic

G S II

FAIR



Vlassiouk et al. PNAS 15 (2009) 21039





Fischer et al. Naturwissenschaften 4 75 (1988) 57

## **Etched Ion-Track Membranes**

## Polymeric







### Inorganic

G S I

FAIR



Vlassiouk et al. PNAS 15 (2009) 21039



Various channel geometries Diameter increases with etching time (~15 nm - µm) Foil thickness up to 100 µm Monodisperse channels Highly parallel oriented channels







Fischer et al. Naturwissenschaften 4 75 (1988) 57

## Ion-Track Nanotechnology at GSI:



### 1. Single nanochannel platform

- unique facility for single ion irradiation
- channel engineering and characterization
- more than 20 groups world-wide
- novel bio- and chemical nanopore sensors

#### 2. Tailored multichannel membranes

- special pore geometries
- new pore arrangements
- surface coatings





Laucirica, Trends in Analytical Chemistry, 144 (2021) 116425





![](_page_8_Picture_16.jpeg)

## Tailored multichannel membranes

![](_page_9_Picture_1.jpeg)

### Can we conformally coat the polymer membranes by ALD?

![](_page_9_Picture_3.jpeg)

F(

Spende, Sobel, Lukas, Zierold, Riedl, Gura, Schubert, Moreno, Nielsch, Stühn, Hess, Trautmann, Toimil-Molares, Nanotechnology 26 (2015) 335301. Sobel, Hess, Lukas, Spende, Stühn, Toimil-Molares, Trautmann, Beilstein J. of Nanotechnol. 6 (2015) 472.

## Tailored multichannel membranes

## FAIR

### Can we conformally coat the polymer membranes by ALD?

![](_page_10_Figure_3.jpeg)

Ulrich, Spende, Burr, Sobel, Hess, Schubert, Trautmann, Toimil-Molares, Nanomaterials II (2021) 1874. Spende, Sobel, Lukas, Zierold, Riedl, Gura, Schubert, Moreno, Nielsch, Stühn, Hess, Trautmann, Toimil-Molares, Nanotechnology 26 (2015) 335301. Sobel, Hess, Lukas, Spende, Stühn, Toimil-Molares, Trautmann, Beilstein J. of Nanotechnol. 6 (2015) 472.

## Tailored multichannel membranes

## FAIR

### Can we conformally coat the polymer membranes by ALD?

![](_page_11_Figure_3.jpeg)

- controlled oxide layer thickness
- very small pore sizes (~ 6 nm)
- material determines isoelectric point of membrane surface
- new membrane applications e.g. for sensing, battery separators, ...
- approach suitable for other materials

Lee, Thangavel, Guery, Trautmann, Toimil-Molares, Morcrette, *Nanotechnology* 32 (2021) 365401. Ulrich, Spende, Burr, Sobel, Hess, Schubert, Trautmann, Toimil-Molares, Nanomaterials 11 (2021) 1874. Spende, Sobel, Lukas, Zierold, Riedl, Gura, Schubert, Moreno, Nielsch, Stühn, Hess, Trautmann, Toimil-Molares, Nanotechnology 26 (2015) 335301. Sobel, Hess, Lukas, Spende, Stühn, Toimil-Molares, Trautmann, Beilstein J. of Nanotechnol. 6 (2015) 472.

7

## Oxide nanotube assemblies

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

## Oxide nanotube assemblies

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_13_Figure_4.jpeg)

Ulrich, Spende, Burr, Sobel, Hess, Schubert, Trautmann, Toimil-Molares, Nanomaterials 11 (2021) 1874.

# FAIR

(4)

(3)

## Tailoring and designing nanowires

5 (1)

![](_page_14_Figure_2.jpeg)

(3) 4 Current (mA) 1 0 200 1000 0 400 600 800 1200 1400 **Deposition time (s) Parameters: Control:** <u>Temperature</u> <u>Electrolyte</u> **Composition** Potential **Crystallinity** Convection Roughness Electrodes Cell geometry

(2)

Nanowires adopt size and shape of hosting channel: control on size and geometry

## Control on crystalline structure

Crystallinity and crystallographic orientation controlled by deposition conditions

![](_page_15_Figure_2.jpeg)

- Applied to study:
  - Crystal growth in confinement
  - Influence of grain size on electrical conductivity, thermal stability, etc.
- Applied to various materials: copper, gold, bismuth, antimony, etc.

Toimil-Molares, Beilstein J. of Nanotechnology 3 (2012) 860.

Picht, Müller, Rauber, Alber, Lensch-Falk, Medlin, Neumann, Sigle, Toimil-Molares, J. Phys. Chem. B 116 (2012) 5367.

Cornelius, Brötz, Chtanko, Dobrev, Miehe, Neumann, Toimil-Molares, Nanotechnology 16 (2005) 246.

## Control on geometry and composition

![](_page_16_Picture_1.jpeg)

Thermoelectrics Topological insulators

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

651

F(AIR

### Control on geometry and composition

![](_page_17_Picture_1.jpeg)

FAIR

## Investigations of size effects

## FAIF

### Some examples...

### Rayleigh Instability

![](_page_18_Picture_4.jpeg)

Nanowires break during electrical measurements due to Joule heat and electromigration

Cassinelli et al. Physica status solidi (a) 213 (2016) 603. Toimil-Molares et al. Adv. Funct. Materials 22 (2012) 695. Toimil-Molares et al. Appl. Phys. Lett. 85 (2004) 5337.

![](_page_18_Figure_7.jpeg)

## Plasmonic properties of Au nanowires

### Some examples...

![](_page_19_Figure_2.jpeg)

Alber, Sigle, Müller, Neumann, Picht, van Aken, Toimil-Molares, ACS Nano, 5 (12) (2011) 9845.

### Nanowire Dimers and Nanogaps

![](_page_20_Figure_1.jpeg)

- Gap size down to few nm.
- Interesting as electrical contacts or hot spots.

## Plasmonic properties of nanowire dimers

![](_page_21_Figure_1.jpeg)

- Splitting into bonding and antibonding modes up to 3rd multipole order.
- Energy splitting decreases with increasing multipole order.

Schubert, Huck, Kröber, Neubrech, Pucci, Toimil-Molares, Trautmann, Vogt, Adv. Opt. Mater. 4 (2016) 1838. Schubert, Sigle, van Aken, Trautmann, Toimil-Molares, Nanoscale 7 (2015) 4935. Alber, Sigle, Müller, Neumann, Picht, van Aken, Toimil-Molares, ACS Nano, 5 (2011) 9845. Alber, Sigle, Demming-Janssen, Neumann, Trautmann, van Aken, Toimil-Molares, ACS Nano 6 (2012) 9711.

## Size-dependent Seebeck coefficient

![](_page_22_Figure_1.jpeg)

#### • Non-monotonic S as a function of wire diameter attributed to surface states, and finite and quantum size effects

Wagner, Paulus, Voss, Trautmann, Völklein, Toimil-Molares, Adv. Electron. Mater. 7 (2021) 3. Cassinelli, Müller, Voss, Trautmann, Völklein, Gooth, Nielsch, Toimil-Molares, Nanoscale 9 (2017) 3169. Cassinelli, Müller, Aabdin, Peranio, Eibl, Trautmann, Toimil-Molares, Nucl. Instr. and Meth. in Phys. Res. B 365 (2015) 668. Müller, Schötz, Picht, Sigle, Kopold, Rauber, Alber, Neumann, Toimil-Molares, Crystal Growth and Design 12 (2012) 615.

![](_page_22_Picture_4.jpeg)

16

### From single wires... to nanowire assemblies

### Cylindrical arrays as photoelectrodes

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

Movsesyan, Yang, Kaiser, Jaegermann, Toimil-Molares et al., Nanomaterials (2018) 8, 693. Yang, Schröck, Toimil-Molares et al. , Zeitschrift für Physikalische Chemie 234 (2020) 1205.

### Conical arrays

![](_page_23_Picture_6.jpeg)

Burr et al. In preparation

base ~µm tip ~few tens nm •up to 100 µm all same height excellent thermal & electrical contact to base mechanically very stable

#### Thermoelectric networks

**Increasing density** 

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

Wagner et al., Physica Status Solidi (a) 213 (2016) 610. 20

![](_page_24_Picture_0.jpeg)

## Thanks!

![](_page_24_Picture_2.jpeg)

**Materials Research at GSI** 

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)